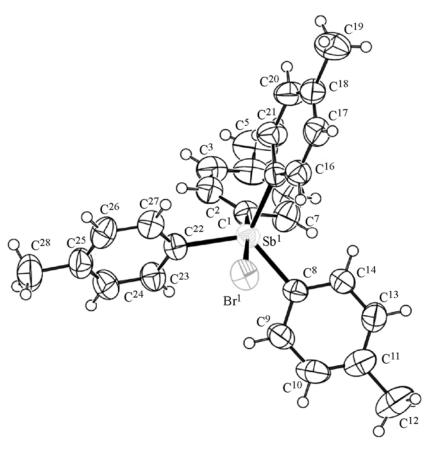
Synthesis and Structure of Tetra-para-tolylantimony Bromide

V. V. Sharutin and O. K. Sharutina

South Ural State University, pr. Lenina 76, Chelyabinsk, 454080 Russia e-mail: vvsharutin@rambler.ru

Received April 18, 2013


Abstract—Reaction of penta-*para*-tolylantimony with tri-*para*-tolylantimony dibromide resulted in tetra-*para*-tolylantimony bromide in 97% yield. The structure of the obtained compound was proved by X-ray diffraction analysis.

DOI: 10.1134/S1070363214030189

A known effective synthesis approach to antimony phenyl derivatives of general formula Ph_4SbX [X = Hlg, OC(O)R, OSO₂Ar, ON=CR₂] is based on the reaction of pentaphenylantimony with Ph_3SbX_2 [1–3], insufficiently studied with the other aryl derivatives of pentavalent antimony.

In the present work we obtained tetra-*para*-tolylantimony bromide by reacting equimolar amounts of penta-*para*-tolylantimony and tri-*para*-tolylantimony dibromide in toluene.

p-Tol₃SbBr₂ \rightarrow 2p-Tol₄SbBr.

General view of the molecule of tetra-para-tolylantimony bromide.

Table 1. Crystal data and structure refinement for tetrapara-tolylantimony bromide

Parameter	Value	
Formula	C ₂₈ H ₂₈ BrSb	
M	566.16	
<i>T</i> , K	273	
Crystal system	Monoclinic	
Space group	P21/n	
a, Å	9.8565(3)	
b, Å	23.2759(8)	
c, Å	12.1005(4)	
α, deg	90	
β , deg	113.291(1)	
γ , deg	90	
V, Å ³	2549.86(14)	
Z	4	
$d_{\rm calc}$, g cm ⁻³	1.475	
μ,mm^{-1}	2.660	
F(000)	1128.0	
Crystal size, mm	0.48×0.26×0.22	
Theta range for data collection, deg	4.54–55.16	
Limiting indices	$-12 \le h \le 12, -30 \le k \le 15, -15 \le l \le 15$	
Reflections collected	23616	
Independent reflections	5879	
$R_{\rm int}$	0.0356	
Refined parameters	275	
GOOF	1.071	
<i>R</i> -Factors on $F^2 > 2\sigma(F^2)$	$R_1 \ 0.0427$ $wR_2 \ 0.0846$	
R-Indices (all data)	$R_1 \ 0.0623$ $wR_2 \ 0.0911$	
Residual electron density (min/max), $e \text{ Å}^{-3}$	0.95/-0.31	

The reaction takes place in an aromatic hydrocarbon at room temperature within 1 day. Heating to 100°C allows achieving acomplete conversion in 1 h. After cooling the reaction product was isolated as

Table 2. Main bonds lengths and bond angles in the structure of tetra-*para*-tolylantimony bromide

Bond	d, Å	Angle	ω, deg
Sb ¹ –Br ¹	2.9529(5)	C ¹ Sb ¹ Br ¹	174.74(9)
Sb^1-C^1	2.143(4)	$C^8Sb^1C^1$	99.01(14)
Sb^1-C^8	2.101(4)	$C^9Sb^1C^{15}$	114.74(13)
$Sb^{1}-C^{15}$	2.117(3)	$C^8Sb^1C^{22}$	122.49(14)
Sb ¹ -C ²²	2.109(3)	$C^{15}Sb^1Br^1$	88.33(10)

crystalline substance. Melting point and IR spectral data were similar to those of the compound obtained by reaction of penta-*para*-tolylantimony and hydrobromic acid.

$$p$$
-Tol₅Sb + HBr $\rightarrow p$ -Tol₄SbBr + TolH.

According to X-ray diffraction (XRD) analysis, in the molecule the antimony atom has a distorted trigonal-bipyramidal coordination with the bromine atom in the axial position (see figure).

The aromatic rings in equatorial plane have a propeller conformation, wherein the angles between the plane of the rings and equatorial plane are 13.57°, 35.08°, 67.86°. High value of one of the angles causes probably intramolecular contact between the bromine atom and *ortho*-positioned hydrogen atom of the toluene ring Br···H¹⁶–C¹⁶ (Br···H¹⁶ 2.71 Å,) with the sum of the van der Waals radii atoms of 3.1 Å [4]. The observed distortion of the axial angle C¹SbBr [174.74(9)°] can be ascrbed to the trend to increase the shortened distance. The fragment Br–Sb–C¹ is distorted due to the deviation of the Sb–Br bond towards tolyl ring (C⁸–C¹⁴) located in the equatorial plane.

The Sb atom is out-of-plane $[C_3]$ towards the carbon atom of axial tolyl group by 0.284 Å, whereby the angles $BrSbC_{eq}$ $[79.17(9)^{\circ}-88.33(10)^{\circ}]$ are less than the ideal value (90°) , and values of the angles $C_{ax}SbC_{eq}$ $[96.90(13)^{\circ}-99.01(14)^{\circ}]$ are larger. The sum of angles in the equatorial plane is 354.6°, and their values are different $[114.7(1)^{\circ}, 117.4(1)^{\circ}, 122.5(1)^{\circ}]$. The ratio of the length of axial Sb– C_{ax} bond [2.143(4) Å] to average value of the length of equatorial Sb– C_{eq} bonds [2.101(4), 2.109(3), 2.117(3) Å] equals 1.016 (~1). All the observed parameters show a tendency of the C_4Sb fragment to transform into a tetrahedral structure. The distance Sb–Br [2.9529(5) Å] exceeds

the sum of the covalent radii of the Sb and Br atoms (2.55 Å [4]), indicating the coordination nature of the bond. In sum, the resulting compound can be considered as a intimate ion pair of $[p\text{-Tol}_4\text{Sb}]^+$ and Br⁻.

At the comparison of the geometric characteristics of Ph₄SbBr [5, 6] and *p*-Tol₄SbBr it is seen that in the phenyl derivative the trigonal-bipyramidal coordination of the antimony atom is less distorted (the ratio of the axial Sb–C_{ax} bond to average value of the equatorial Sb–C_{eq} bonds equal to 1.023, the sum of the angles in the equatorial plane is 357.0°, average values of the angles BrSbC_{eq} and C_{ax}SbC_{eq} constitute 84.09° and 96.01°. The distance Sb–Br (2.965 Å) in the phenyl derivative is more than in *p*-Tol₄SbBr. Note that in chlorides [Ar₄Sb]⁺Cl⁻ (Ar = Ph [7], *p*-Tol [8]) the contribution of the ionic form in the toluene derivative is also more than in tetraphenylantimony chloride.

EXPERIMENTAL

Single crystal XRD analysis was performed on an automatic four-circle diffractometer D8 QUEST Bruker (MoK_{α} -irradiation, λ 0.71073 Å, graphite monochromator). Data collection and refinement of the unit cell parameters were made using SMART and SAINT-Plus software [9]. The structure was solved by the direct method and refined by the least-squares method in the anisotropic approximation for non-hydrogen atoms using SHELXL/PC software [10]. The main crystallographic data and structure refinement parameters are given in Table 1, the bond lengths and angles are listed in Table 2.

Tetra-para-tolylantimony bromide (I). A mixture of 0.20 g (0.35 mmol) of penta-para-tolylantimony

and 0.19 g of tri-*para*-tolylantimony dibromide in 5 mL of toluene was heated at 100°C for 1 h. After cooling the solvent was removed. Yield 0.38 g (97%), mp 224°C. Found, %: C 59.48; H 5.07; Br 14.25. C₂₈H₂₈SbBr. Calculated, %: C 59.36; H 4.95; Br 14.13.

REFERENCES

- 1. Sharutin, V.V., Senchurin, V.S., Sharutina, O.K., Pakusina, A.P., and Panova, L.P., *Zh. Obshch. Khim.*, 1996, vol. 66, no. 10, p. 1755.
- Sharutin, V.V., Sharutina, O.K., Panova, L.P., and Bel'-skii, V.K., Zh. Obshch. Khim., 1997, vol. 67, no. 9, p. 1531.
- 3. Sharutin, V.V., Sharutina, O.K., Molokova, O.V., Ettenko, E.N., Krivolapov, D.B., Gubaidullin, A.T., and Litvinov, I.A., *Russ. J. Gen. Chem.*, 2001, vol. 71, no. 8, p. 1243.
- Batsanov, S.S., Zh. Neorg. Khim., 1991, vol. 36, no. 12, p. 3015.
- 5. Ferguson, G., Glidewell, C., Lloyd, D., and Metcalfe, S., *J. Chem. Soc., Perkin Trans.* 2, 1988, p. 731.
- 6. Knop, O., Vincent, B.R., and Cameron, T., *Can. J. Chem.*, 1989, vol. 67, p. 63.
- Sharutin, V.V., Sharutina, O.K., Pakusina, A.P., Platonova, T.P., Zadachina, O.P., and Gerasimenko, A.V., *Russ. J. Coord. Chem.*, 2003, vol. 29, no. 2, p. 89.
- 8. Sharutin, V.V., Sharutina, O.K., Pakusina, A.P., Smirnova, S.A., and Pushilin, M.A., *Russ. J. Coord. Chem.*, 2005, vol. 31, no. 2, p. 108.
- Bruker (1998). SMART and SAINT-Plus. Versions 5.0.
 Data Collection and Processing Software for the
 SMART System. Bruker AXS Inc., Madison,
 Wisconsin, USA.
- Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.